1.3.3 Existence and uniqueness of solution

In this section we need to present the conditions which are used to show that whether there
may not exist solution, there may exist solution, or there exist infinitely may distinct
solutions. In other words, either there is no existence of solution or no uniqueness.

Consider the first-order PDE

a@+b@:c. (1.9
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Here, we want to find the solution of equation (1.9) through the curve which is defined by

x=Xx(t), y=y{), z=z().
Now,

0z oz dz 0z dx oz dy
dz=—dx+—dy, > —=——"T+—-"2,
OX oy dt ox dt oy dt

Thus, we have
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Then, from equations (1.9) and (1.10), we have the following system
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Now,

=0 = ay'-bx'#0
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Then, the system (1.11) has a unique solution.

a b Vo

2 |, |=0 = ay'—bx'=0, then
Xy
a ¢ .,

2a) |, |=0 = az'-cx' =0.
X'z

Then, there exist infinitely distinct solutions.
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2b) |10 = az'-cx' #0.
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Then, there may not exist a solution.

Example: (x—y)%+(y—x—z)%=z,through thecurve x> +y? =1, z=1.

X =t, = x'=1

—t
y=+vl-t? = y'=

V1-t?
z=1,
and,
a=x—y=t—v1-t> , b=+v1-t*’-t-1 c=z=1.
Thus,
a b t—v1-t* J1-t° —t— _t2 _t2

= —t = ( +t) - (V1-t? —t-1) = —N1-t? +2t+1
X'y 1 T Vi-t? N
:\/1—t2(2t—1)—1
V1-t?

Example: z@+@ =1, through the curve 2x=y?* , z=y.
ox oy

y=t, = y=1

x:lt2 = X'=t
2

z=t, =17'=1

and,

a=z=t , b=1 c=1

Thus,

a bl

, , = :t—t:o’
X"yt
and
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Therefore, there exist infinitely distinct solutions.

Example: Find the solution of the equation

(x* + 2y2)?— xy% = xz, through the curves x* +z* =a®* , y=/f,where o and
X
J3 are constants

X =t, = x'=1
y=g = y=0
—t

7=Aa’-t?, =7'=
2_¢2

(04

and,

a=x"+2y* =t*+2p8°, b=-xy=—-A c=xz=tJa®-t*.

Thus,

a b 2 2 _

' ':t +2p3 i _ =0,
X'y 1 0

Therefore, there exists a unique solution.

The characteristic equations are

dx _dy _dz
(x> +2y?) —-xy xz
Thus,

dx dy

= (X +2y?)dy+xydx=0 = x(xdy+ydy)+2y?dy=0

(< +2y%)  —xy

xyd(xy)+2y3dy=0 = %x2y2+%y4:c = x’y?+yt=¢

dy _dz :ﬂ:% = In(y)+In(z) =¢' = yz=c,

-Xy Xz -y
B2+ gt =c, (*)
Bla?-t? =c, = —p%%+p%® =c? (**)

From (*) and (**) we have
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2 20,2 2
¢ +C; =p4%(a” + %)
Therefore, the general solution is

X2y2+y4+y222=ﬂ2(a2+,6’2).

1.4 Partial differential equation of high-order

The general form of this type of equation is

n n n n
ZX: +al axén_lzay +a2 axna_zzayz +'“+an %: f(X, y) (112)
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where, a,,8;,8,,--+,a, are constants.

1.4.1 Partial differential operator

The operator D uses in the PDESs to represent the partial derivatives, and define as

-2,  p,-2
OX oy
2 2
o 28_2’ Dy :a_2
OX oy (1.13)
o" o"
D)r(] 8Xn D;I = ayn

Therefore, by using (1.13) equation (1.12) can be expressed as

(a.Dy +& D} 'D, +a,D °DJ +---+a,Dy)z = f (X, y) (1.14)
In addition, equation (1.14) can be written also as

L(Dy,Dy)z=f(x,y) (1.15)

In the case of f(X,y)=0, equation (1.15) is called homogeneous equation, in contrast if
f(X,y)#0 equation (1.15) is called inhomogeneous equation. In the case of

inhomogeneous equation (1.15), firstly we have to find the general solution for the
homogeneous equation L(D,, D, )z =0, and then the particular solution for inhomogeneous

equation L(D,, D)z = f(X,y).
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